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Three Major Thrusts of Our Research

CONTRIBUTIONS |2

A sparse convolutional neural 
network (CNN) model

A novel training  strategy to 
ensure the robustness for 

compressed models

+

A novel compression strategy 
for event driven deep spiking 

neural networks (SNNs)

Reduction in 
training energy

Algorithmic
development

Increased robustness with 
reduced inference energy

Extremely reduced inference 
energy through event driven 

computation

1
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Reducing Training Complexity of CNNs

PRE-DEFINED SPARSE CNN |3

Need various types of convolution 
operation support

Indexing overhead of 
channel shuffling

Responsible for majority of 
the energy consumed

A CNN for image classification Basic convolution (CONV) operation 

Issues with existing low-complexity models
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* Results on Tiny-ImageNet (top-1) where the proposed  model has similar or lesser parameter compared to the other two. All trained with same hyper parameters.
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ROBUST COMPRESSION |5

Tree

Bird

Take 
knowledge 
from model

Add 
perturbation 

to input

Stop

House

A life-threatening 
consequence

Attacker

Robustness is model performance 
against these perturbed input
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Adversarial Training Likes More Weights
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Adversarial Training Likes More Weights
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Number of weights having non-negligible magnitudes increases when we train
the model with adversarial as well as clean image.
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Adversarial Training Likes More Weights

ROBUST COMPRESSION |6

Number of weights having non-negligible magnitudes increases when we train
the model with adversarial as well as clean image.

Robust pruning is challenging
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Prior Art Approaches: All Iterative  
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Proper tuning of per-layer pruning 
for better performance is tedious job

We use the hidden information of the 

network to find layer significance: 
𝜕(𝐿𝑜𝑠𝑠)

𝜕(𝑊𝑒𝑖𝑔ℎ𝑡)

momentum
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ROBUST COMPRESSION |8

Our Unified Robust Compression

Calculate momentum 
distribution per layer

Prune fraction of smallest 
weights from each layer

Redistribute edges according 
to weights having larger 

momentums

𝐿𝑜𝑠𝑠

*Based on results evaluated with VGG16 and ResNet18 on CIFAR datasets.
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Our Unified Robust Compression

1
2

1
2

1
2

Calculate momentum 
distribution per layer

Prune fraction of smallest 
weights from each layer

Redistribute edges according 
to weights having larger 

momentums

𝐿𝑜𝑠𝑠𝑎𝑑𝑣

𝐿𝑜𝑠𝑠𝑐𝑙𝑒𝑎𝑛

𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑟𝑐𝑜𝑛𝑣𝑒𝑟

𝐿𝑜𝑠𝑠

Increased inference compute efficiency up to 50% 
compared to the currently existing approaches*

Better 
convergence

Sparse weight-update

*Based on results evaluated with VGG16 and ResNet18 on CIFAR datasets.
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Extension to Support Channel Pruning
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Extension to Support Channel Pruning

ROBUST COMPRESSION |9

Linear
layers

CONV 1 CONV 2 CONV 3 Flatten

Potential inference speed-up up to 10x*

*Based on results evaluated with VGG16 and ResNet18 on CIFAR datasets.

Effective model shrinks
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Thinking Beyond Conventional Computation

BEYOND CONVENTIONAL |10

Need to look for longer
duration to see better

Yes! a spike!

Synaptic weight

Synaptic neuron

Analog input driven 
compute

Spike based event-driven 
compute

Low-power compute with suitable hardware

Artificial neural network 

Spiking neural network

Notion 
of time
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Deep SNNs: Beauty and the Beast!  
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Check if 
crossing a 
threshold

Integrate and fire
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Deep SNNs: Beauty and the Beast!  

BEYOND CONVENTIONAL |11

∑

Synaptic neuron

Check if 
crossing a 
threshold

ANN-to-SNN 
Conversion

Training time similar  to ANN Increased spiking activity over time

Increased inference energy

Constrained 
ANN  training

SNN 
inference

Accuracy similar  to ANN

Our focus

Integrate and fire

Existing approach

No Multiply-add!
Only accumulate
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Compression      Brain-inspired

BEYOND CONVENTIONAL |12

A SNN conversion 
friendly ANN

Reduced weight 
ANN

  

  

  

  

  

    

  

  

Spikethrift: reduced 
spiking activity SNN

non-iterative 
compression

Apply ANN-to-
SNN conversion

Potential for extreme 
energy-efficient 

compressed deep SNNs

Computing!

No 
batch-
norm

No bias

No max-
pool

for
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A SNN conversion 
friendly ANN

Reduced weight 
ANN

  

  

  

  

  

    

  

  

Spikethrift: reduced 
spiking activity SNN

non-iterative 
compression

Apply ANN-to-
SNN conversion

Potential for extreme 
energy-efficient 

compressed deep SNNs

Training suffers from 
convergence issue

No 
batch-
norm

No bias

No max-
pool

Compression      Brain-inspired Computing!for
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A SNN conversion 
friendly ANN

Reduced weight 
ANN

  

  

  

  

  

    

  

  

Spikethrift: reduced 
spiking activity SNN

non-iterative 
compression

Apply ANN-to-
SNN conversion

Potential for extreme 
energy-efficient 

compressed deep SNNs

Let us use someone
to guide this fellow

A pre-trained 
unpruned meta 

model

Compared to ANN with similar 
parameters, Inference compute 

energy can reduce up to 3x*

No 
batch-
norm

No bias

No max-
pool

*Based on initial results on CIFAR datasets with VGG model

Compression      Brain-inspired Learning!via
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Summary

SUMMARY |13

Reduce training energy through a novel convolution-
based model 

Reduce inference energy and retain robustness 
through a unified training via a comprehensive loss

A guided compression strategy for event-driven SNN 
to yield extreme energy-efficient modelsTo
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Thanks to all …
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Questions


