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We are in the Machine Learning (ML) Era
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We are in the Machine Learning (ML) Era

Cloud computation Edge computation
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Reduce Training Reduce Inference
Complexity Complexity
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Three Major Thrusts of Our Research

Algorithmic Hardware
development capabilities
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A sparse convolutional neural ) @ 2 = Reduction in
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Three Major Thrusts of Our Research
S
A sparse convolutional neural )88 5 Reduction in
network (CNN) model Jite training energy
A MRVEl WEIMINE STEisE) e Increased robustness with
ensure the robustness for :
. & reduced inference energy
compressed models o
Extremely reduced inference

energy through event driven
computation

A novel compression strategy
for event driven deep spiking
neural networks (SNNs)
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Reducing Training Complexity of CNNs

Feature maps

R

Convolutions Subsampling Convolutions Subsampling Fully connected

A CNN for image classification Basic convolution (CONV) operation

Issues with existing low-complexity models

Responsible for majority of
the energy consumed
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A Pre-defined Sparse CNN
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A Pre-defined Sparse CNN
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A Pre-defined Sparse CNN
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* Results on Tiny-ImageNet (top-1) where the proposed model has similar or lesser parameter compared to the other two. All trained with same hyper parameters.
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Robustness is a Growing Concern :
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Robustness is a Growing Concern :

Robustness is model performance
against these perturbed input

Add
perturbation
to input

Take
knowledge
from model
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Adversarial Training Likes More Weights

Clean image
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Adversarial Training Likes More Weights
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Number of weights having non-negligible magnitudes increases when we train
the model with adversarial as well as clean image.
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Adversarial Training Likes More Weights
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Adversarial training
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Number of weights having non-negligible magnitudes increases when we train
the model with adversarial as well as clean image.

Robust pruning is challenging
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Prior Art Approaches: All Iterative

After
standard

adversarial
training
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Prior Art Approaches: All Iterative

After
standard
adversarial
training
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Prior Art Approaches: All Iterative

: : We use the hidden information of the
Proper tuning of per-layer pruning d(Loss)

for better performance is tedious job network to find layer significance: d(Weight)
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Our Unified Robust Compression

Calculate momentum
distribution per layer

Prune fraction of smallest
weights from each layer

Redistribute edges according
to weights having larger
momentums

*Based on results evaluated with VGG16 and ResNet18 on CIFAR datasets.
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Our Unified Robust Compression

Calculate momentum
distribution per layer

Prune fraction of smallest
weights from each layer

Loss clean

Remove n edges

Loss,,,

Regularizer,,,, .,

Redistribute edges according
Better g ' . .

L | to weights having larger

convergence
: momentums
Sparse weight-update
Increased inference compute efficiency up to 50%
compared to the currently existing approaches”

*Based on results evaluated with VGG16 and ResNet18 on CIFAR datasets.
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Extension to Support Channel Pruning

Linear
b » layers
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Extension to Support Channel Pruning
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Extension to Support Channel Pruning

Linear
layers

Effective model shrinks

f Potential inference speed-up up to 10x

*Based on results evaluated with VGG16 and ResNet18 on CIFAR datasets.
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Thinking Beyond Conventional Computation

Xy W2 y Analog input driven
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X3
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Artificial neural network
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Thinking Beyond Conventional Computation
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Thinking Beyond Conventional Computation
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Artificial neural network

Synaptic neuron
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- Yes! a spike!
0 5 10 15 20 25 30

U MY Synaptic weight
Spiking neural network
Need to look for longer »
duration to see better of time

Spike based event-driven
compute

Low-power compute with suitable hardware
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Deep SNNs: Beauty and the Beast!
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\ Check if
crossing a
threshold

USCWtCI'bi © Souvik Kundu BEYOND CONVENTIONAL |11

School of Engineering Univer Sity of Southern California




Deep SNNs: Beauty and the Beast!

N\
N\
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No Multiply-add!
Only accumulate

\ Check if
crossing a
threshold
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Deep SNNs: Beauty and the Beast!
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crossing a I
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Existing approach

Constrained ANN-to-SNN
ANN training Conversion inference

—————————————————— —_——_—_——_*—————————\

Training time similar to ANN ‘ Increased spiking activity over time f
Accuracy similar to ANN f
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Compression for Brain-inspired Computing!

Potential for extreme
energy-efficient
compressed deep SNNs

batch
o non-iterative
compression SNN conversion
No max-

A SNN conversion Reduced weight
friendly ANN ANN

Spikethrift: reduced

spiking activity SNN
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Compression for Brain-inspired Computing!

non-iterative
compression

A SNN conversion
friendly ANN

Training suffers from
convergence issue

USC Viterbi
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Potential for extreme
energy-efficient
compressed deep SNNs

Apply ANN-to-
SNN conversion

Reduced weight Spikethrift: reduced
ANN spiking activity SNN
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Compression via Brain-inspired Learning!

non-iterative
compression

A pre-trained
unpruned meta
model
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Potential for extreme
energy-efficient
compressed deep SNNs

Apply ANN-to-
SNN conversion

Spikethrift: reduced
spiking activity SNN

Compared to ANN with similar
parameters, Inference compute
energy can reduce up to 3x”

Let us use someone
to guide this fellow

*Based on initial results on CIFAR datasets with VGG model
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Summary
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Thanks to all ...
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