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Al: Energy-Efficiency is a Demand now!
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Why Brain-Inspired SNNs? U Sasbem Gl

% Can be extremely compute-energy efficient. iScience Cell

REVIEWS

¢ Can work in an event-driven way on underlying

Neuromorphic hardware. Data and Power Efficient Intelligence
with Neuromorphic Learning Machines

*¢ Assumed to mimic functionality of human brain.,
Emre O. Neftci®2*
< Requires reduced memory for activation storage. awidesprend nterest i ntomerpie hardeae het sdate th biogiclprOCoes of e rse

on an electronic substrate. This review explores interdisciplinary approaches anchored in machine
learning theory that enable the applicability of neuromorphic technologies to real-world, human-
centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent
learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and
autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-
stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up ap-
proaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic
learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic
substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware
for proactive learning of real-world data.

Image taken from "Data and Power Efficient Intelligence with
Neuromorphic Learning Machines”, 2018.



Basics of SNNs T Southem Cattoria
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Sparsity*

*In this work we term sparse and pruned model interchangeably to mean the same idea of reduced parameter model.
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Challenges with Deep SNN models

Storage Similar to ANNs, deep SNNs also suffer from high parameter storage requirement

To yield faster ANN-to-SNN convergence SNN models are recommended to not use

Convergence batch-normalization (BN) layers

Due to back-prop through time (BPTT) SNNs require orders of larger training time,
thus iterative pruning is difficult.

Training time




Currently Existing SNN Pruning Schemes
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|lterative Magnitude Pruning (IMP)
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What We Plan to Achieve? T St Cattoni

Gradient-
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Convergence issue No Convergence issue

W/o BN (Standard initialization) With BN (Standard initialization
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Simple sparse learning approaches like DNR fails to compress
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Proposed: Attention-Guided Compression (AGC) T Souhem Catton
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*  S. Kundu et al., “Spike-Thrift: Towards Energy-Efficient Deep Spiking Neural Networks by Limiting Spiking Activity via Attention-Guided Compression”, WACV, 20217.
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Results

Authors Training Architecture | Compress- | Accuracy | Time
type ion ratio (%) steps
| Dataset : CIFAR-10
Cao et al. ANN-SNN 3 CONYV, 1x 77.43 400
(2015) [4] conversion 2 linear
Sengupta et ANN-SNN VGG16 1x 91.55 2500
al. (2019)[37] | conversion
Wu et al. Surrogate 5 CONV, 1x 90.53 12
(2019) [44] gradient 2 linear
Rathi et al. Hybrid VGG16 1x 91.13 100
(2020) [36] training 1x 92.02 200
Deng et al. STBP 11 layer 1x 89.53 8
(2020) [8] training CNN
Deng et al. STBP 11 layer 4 87.38 8
(2020) [8] training CNN
This work Hybrid SL VGGI16 2.5% 91.29 100
[ 33.4x 90.15 100
| Dataset : CIFAR-100
Deng et al. STBP 11 layer 2 57.83 3
(2020) [8] training CNN
This work Hybrid SL VGG11 4x 64.98 120

Table 2. Performance comparison of the proposed hybrid SL with
state-of-the-art deep SNNs on CIFAR-10 and CIFAR-100.
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Better accuracy

VS. compression
ratio trade-off

*  S. Kundu et al., “Spike-Thrift: Towards Energy-Efficient Deep Spiking Neural Networks by Limiting Spiking Activity via Attention-Guided Compression”, WACV, 20217.
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Summary

¢ Proposed AGC can yield compressed SNN models through a one-shot pruning of the target model.
s AGC achieves SOTA compressed model that can retain classification performance.

¢ AGC finds optimal layer significance for a given target global pruning ratio-no need of manual or search or
separate learning techniques to evaluate layer significance.

Fundamental take-away:

Exploding gradient issue of BN-less models can be resolved through guidance via activation maps from a
trained model

16



Robustness
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Robustness is a Growing Concern

[ Robustness is model performance against the perturbed inputs ]
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Add Take A life-threatening consequence
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Q9
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How are the Perturbations Generated?

Gradient-based strong perturbation generation

Fast gradient sign method (FGSM) -+ x = x+ € X sgn(V,J(g(x;0), t))

Projected gradient descent method (PGD) g i G0 XM CARETERA (7C Al )W)

19
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% Few earlier research have concluded that SNNs are to some extent, inherently robust to adversarial images.
¢ Earlier research also hinted at SNNs to be more inherently robust than ANN counter-parts.
¢ However, no earlier work has concluded the same for extremely low-latency SNNs, which is a more applicable

scenario for real-time applications.
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The Problem

¢ Low-latency direct input SNNs
(LLSNNs) are extremely compute-
efficient.

% However, these SNNs sacrifice
adversarial robustness significantly.

% Low-latency SNNs has poor
adversarial robustness compared to
ANN counter-parts.

Average Spikes
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S. Kundu et al., “HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise”, /CCV 2021.
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Where do LLSNNSs Differ from Rate-Coded SNNs?

¢ Activation-sparsity is helpful for robustness:
Spiking-activity per unit time step is more in

LLSNNs

¢ Input approximation is helpful for robustness:
Direct input makes sure no input approximation

happens

¢ Reduction in time-step helps improve robustness:
However, LLSNNs can't gain from further reduction

in t-steps.
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S. Kundu et al., “HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise”, /CCV 2021.
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Proposed Training Scheme: HIRE-SNN T St oo

Traditional Proposed

¢ Partitioning the t-steps T into multiple periods of
small steps.

¢ Instead of using the same image over multiple t="TI1
steps, feed different perturbed variants of the
image, during different periods.

t=T2

t=T3

B pPerturbation

S. Kundu et al., “HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise”, /CCV 2021.
23



HIRE-SNN: Training Strategy T S i

' Traditional
I SNN training
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S. Kundu et al., “HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise”, /CCV 2021.
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HIRE-SNN: Performance T cvesityof

Accuracy (%) with A, over traditional || A, over ANN Accuracy (%) with A, over traditional || A, over ANN

Model proposed SNN training SNN training equivalent Model | proposed SNN training SNN training equivalent
Clean(A ;) | FGSM ‘ PGD || FGSM | PGD FGSM | PGD Clean | FGSM | PGD || FGSM | PGD FGSM \ PGD
Dataset : CIFAR-10 Dataset : CIFAR-10 L o
VGG5 | 87.5(-04) | 38.0 | 9.1 .r +2.5 +3.8 +25 | +7.1] VGGS 87.5 | 42.1 14.9 +3.9 +8.3 +18.1 | +8.51
ResNet12 | 90.3(-1.6) | 333 | 3.8][ +12.2 +3.5 +134 | +18 | ResNetl2 | 90.3 | 384 7.8 ) +13.7 +7.2 +9.7 | 4351
Dataset : CIFAR-100 : Dataset ;JCIFAR-100 |
VGGI1 | 65.1(-04) | 22.0 | 75 || +5.7 +4.6 +5.1 [ -0.7 | VGGI1 | 65.1 | 29.1 | 16.1 | +10.0 +9.9 +5.6 | +091
ResNet12| 589(-3.0) | 193 | 53 _[| +88 | _+4.7_ || +58 | +2.5 ResNetl12 | 589 | 245 | 12.1 || +10.4 +10.1 +13 | ~0l

HIRE-SNN consistently outperforms, traditional SNNs in
providing better robustness

S. Kundu et al., "HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise”, /CCV 2021.

25



=% [USC University of

Crafted Noise vs. Gaussian Noise T St el
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Evaluation type

Gaussian noise induced inputs does not improve performance
against strong adversary

S. Kundu et al., "HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise”, /CCV 2021.
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Summary

¢ Inherent robustness of LLSNNs (direct input) are poorer compared to rate-coded SNNs, when trained in
traditional approach.

¢ HIRE-SNNSs is a novel training strategy that can train SNNs with improved robustness against adversary.

¢ Crafted input noise helps improve robustness, however simple noise addition (e.g.: Gaussian noise) doesn't
help against strong adversary.

Fundamental take-away:

A fixed image over the whole window of t-steps is not necessary for the SNN to train, various
augmented variants can be fed to improve performance.
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